L28 March 24 Htpy

Monday, March 23, 2015 10:49 AM

Continuous Change

Let X,Y be spaces. Two continuous waps

$$f,g:X\longrightarrow Y$$
 are homotopic if

 $\exists continuous \ H:X\times [0,1]\longrightarrow Y$, call homotopy

such that $H(x,0)=f(x)$ $\forall x\in X$
 $H(x,1)=g(x)$

Notation. $f \simeq g$ or $f \stackrel{H}{\simeq} g$

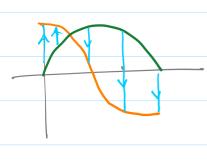
Example

Any two
$$R\alpha$$
, $R\beta$ are homotopic
e.g $H(x,t) = R_{(1-t)\alpha+t\beta}(x)$

Clearly, homotopy may not be unique.

$$\begin{array}{ccc}
& f,g: [0,\pi] & \longrightarrow \mathbb{R}^2 \\
& f(x) = \sin x
\end{array}$$

$$H(x,t) = \sin\left(x + \frac{t\pi}{2}\right)$$



(3)
$$X = S' = \{ z \in C : |z| = 1 \}$$
, $Y = \mathbb{R}^2$
 $f, g : S' \longrightarrow \mathbb{R}^2$, $f(x+iy) = (x,y)$, $g(x) = (\frac{1}{2},0)$
 $H(z,t) = (1-t)z + \frac{1}{2}$

Null homotopic

A map $C: X \longrightarrow Y$ with $C(x)=y_0$ $\forall x \in X$ is called a constant map (onto $y_0 \in Y$)

If $f: X \longrightarrow Y$ satisfies $f \simeq C$ then f is null homotopic or homotopically trivial.

Fact. Any map $f: X \longrightarrow \mathbb{R}^n$, $n \ge 1$, is null homotopic.

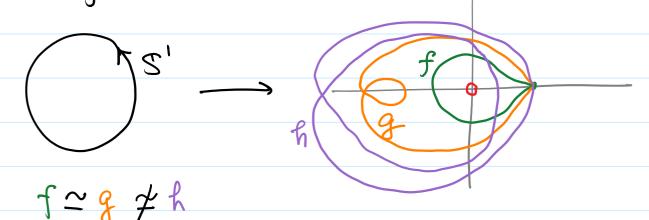
 $H: X \times [0,1] \longrightarrow \mathbb{R}^n$, H(x,t) = (1-t)f(x)

Example YCR is called star-shaped if

= yoeY \forall yeY \forall (1-t)y+ty,: te[o,1] \forall Y

On. Can we replace the straight = lines by other continuous paths?

Example. Consider the following three maps $f, g, h: S' \longrightarrow \mathbb{R}^2 \setminus \{0.0\}$. Their images are shown

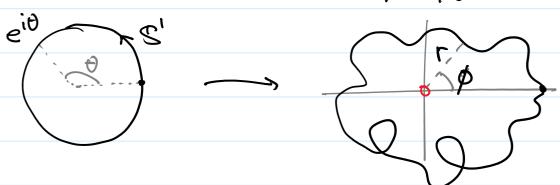


This can only be understood intuitively now.

Intuition

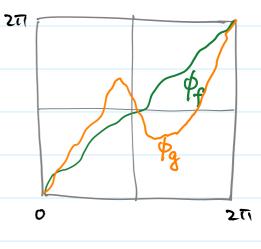
For any map $S' \longrightarrow \mathbb{R}^2 \setminus \{(0,0)\}^2$, it can be expressed as $e^{i\theta} \longrightarrow re^{i\phi}$ where

 $r = r(\theta) > 0$ and $\phi = \phi(\theta)$



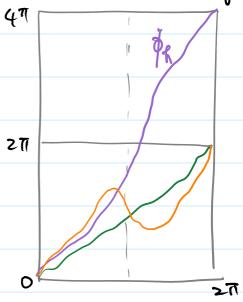
We only need to worry about β because any two $r_1, r_2 > 0$ can be easily homotopic.

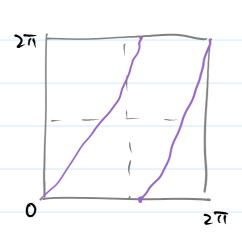
Without loss of generality, assume $\phi(0)=0$. Then, when one varies θ in the domain S', $\phi=\phi(\theta)$ changes dependently continuously. For the example of f and g, the graphs of ϕ are drawn below



Note that the two "ends" at (0,0) and (21,211) actually correspond to the same point on the loops of f and g.

In the above pictures, it is easy to continuously change by to by with the two end-points fixed. This gives a homotopy between f and g. However, the graph of h is different.



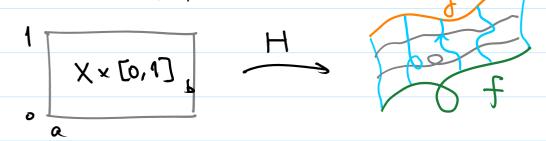


If we expect p_R goes from (0,0) to $(2\pi,2\pi)$, we can only have the discontinuous graph shown on the right hand side picture. To have a continuous p_R , the graph goes from (0,0) to $(2\pi,4\pi)$.

One cannot at the same time fixed the end-points and continuously change to any of or bg.

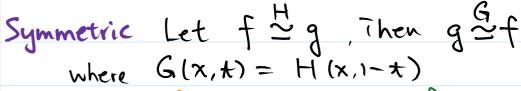
Pictures

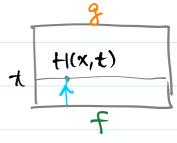
We usually draw pictures of homotopy by X = [a,b], $Y = \mathbb{R}^2$

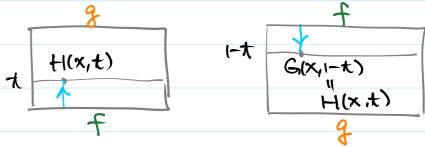


Given spaces X, Y, the homotopy relation \cong is an equivalence relation on maps: $X \longrightarrow Y$ Reflexive

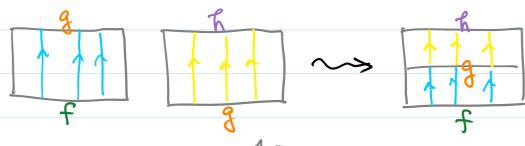
 $f \simeq f$ by $H(x,t) = f(x) \forall t \in [0,1]$







Transitive Let f = q, g= h Then J H: X×[0,1]→Y, F™R $H(x,t) = \frac{7F(x,2t)}{G(x,2t-1)} t \in [0,\frac{1}{2}]$



Adjust the clock



Conclusion

Let
$$C(X,Y) =$$
the set of continuous maps $X \rightarrow Y$
 $[X,Y] = C(X,Y)/_{\sim}$
A set of homotopy classes

Example. [5', Y] reflects some topological structure of the space Y.

 $[S', \mathbb{R}^n] = \{[C]\}, \text{ singleton class of }$ $n \ge 1$ the constant map

[S', 72 \ sol] + singleton [f] = [g] + [h]

 $: \left[S', \mathbb{R}^2 \setminus \left[0\right]\right] \neq \left[S', \mathbb{R}^n\right], n \ge 1$

Expect $\mathbb{R}^2 \setminus \{0\} \neq \mathbb{R}^n, n \geqslant 1$

Theorem you need!

* If Y = Yz (homeomorphic)

then \forall space \times , $[\times, T_1]$, $[\times, T_2]$ are bijective

x If $X_1 = X_2$ (homeomorphic)

then & space Y, [xi,Y], [x2,Y] are bijective

Idea of proof

Let $\varphi: T_1 \longrightarrow T_2$ be a homeomorphism Define $\varphi_{\sharp}: [X, Y_1] \longrightarrow [X, Y_2]$ by

[f] -> [40f]

Qu. What do we need to check?

(is 9# is well-defined, i.e. [f]=[g] => [qf]=[qg]

(iii) anto $\{ (\phi_{\#})^{-1} = (\phi_{\#})^{-1} = (\phi_{\#})^{-1} \}$

More about the proof

(1)
$$[f] = [g] \Rightarrow [\varphi \circ f] = [\varphi \circ g]$$

$$f \simeq g \qquad \qquad \varphi \circ f \simeq \varphi \circ g$$

$$\begin{array}{c} (ii) \\ (ii) \\ (iii) \\ \end{array}$$

$$\begin{array}{c} (\varphi)^{-1} = (\varphi)^{-1} \\ \\ (iii) \\ \end{array}$$

$$\begin{array}{c} (\varphi)^{-1} \\ \\ (\varphi)^{-1} \\ \end{array}$$

The crucial argument used in (i), (ii), (iii) is the result below.

Ultimate Theorem Let
$$X,Y,Z$$
 be spaces and $X \xrightarrow{f_0} Y \xrightarrow{g_0} Z$. If $f_0 \xrightarrow{f_1} f_1$ and $g_0 \xrightarrow{g_0} g_1$ then $g_0 \cdot f_0 \simeq g_1 f_1 \simeq g_1 f_2 \simeq g_1 f_3 \simeq g_0 f_1 : X \longrightarrow Z$

Construct
$$H: X \times [0,1] \longrightarrow Z$$
 by

$$H(x,t) = G(F(x,t),t)$$

The other homotopies are similar

Example. Let us consider $X = S^{\circ} = \{x \in \mathbb{R} : |x|^{2} = 1\} = \{\pm 1\} \subset \mathbb{R}$ Qu. What is the meaning of $[S^{\circ}, Y]$?

(i) For $[f], [g] \in [S^{\circ}, Y]$, we have $f, g : S^{\circ} = \{\pm 1\} \longrightarrow Y$ There are four points $f(-1), f(1), g(-1), g(1) \in Y$ $f \simeq g \iff \exists two paths joining$ f(-1) to g(-1); f(1) to g(1)If Y is path connected then $f \simeq g \ \forall f, g$ $\therefore [S^{\circ}, Y]$ is singleton

Qu. What if I has two path components?

For convenience, we consider mappings of a pair $(5^0, -1) \rightarrow (7, y_0)$ i.e., $f: 5^0 \rightarrow 7$ such that $f(-1) = y_0$ Then $[(5^0, -1), (7, y_0)]$ exactly counts the number of path components of 7.

Mappings of a pair Let $A \subset X$, $B \subset Y$, $f:(X,A) \longrightarrow (Y,B)$ is a continuous mapping $f:X \longrightarrow Y$ such that $f(A) \subset B$.